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Abstract

The design and analysis of a hybrid diffractive/refractive achromat for optical data

storage is presented, beginning with a discussion of the construction and diffraction

efficiency of surface-relief diffractive lenses. The phase function, which defines a

diffractive lens in much the same manner as a surface sag equation defines a refractive lens,

is examined. The thin lens, or Sweatt, model of a diffractive lens is discussed, and

equations are provided that allow conversion to and from the phase model. The thin lens

model provides a good method to design diffractive lenses using conventional lens design

software. This model also provides a convenient means of deriving the third-order

aberrations of a diffractive lens.

A wave propagation approach is used to discuss how decentering or tilting one of the

elements with respect to the other will affect the PSF and MTF of a doublet. Two

examples of achromat design are presented. First, a conventional refractive achromat with

no spherical aberration or coma is designed, and the method is then extended to design a

hybrid diffractive/refractive achromat.

Finally, design constraints and performance goals for a hybrid diffractive/refractive

achromat for use in an optical data storage system is presented. Two figures of merit used

to evaluate the performance of the achromat are the Strehl ratio, which should remain

greater than 0.96 over a 10 half field of view, and the ratio of focal length change per

wavelength change, which should remain less than 0.11.tn/nm over the wavelength band.

An optimized hybrid achromat is presented, and design tolerances with respect to

fabrication errors--element misalignment, thickness errors, diffractive surface zone radii

errors, blaze height errors, and mask misalignment errors-are discussed.
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1. Introduction

1.1. Brief history of hybrid achromats

1.1.1. Preface

The purpose of this thesis is to investigate'the use of a surface-relief diffractive

optical element in conjunction with a conventional refractive element to produce a hybrid

diffractive/refractive achromat for use in optical data storage. Since the invention of the

diffraction grating in 1785 by David Rittenhouse, there have been, of course, many

developments in the theory and use of diffractive optical elements. This chapter provides

a description of work performed in the area of achromatization with diffractive optical

elements.

1.1.2. Earlier work

Early work in the area of surface relief diffractive optics was provided by

Sliusarev, 1 Tudorovskii,2 and Miyamoto.3 Sliusarev discussed the profile shape required

for producing only on focus, and included a description of the "phase plates" dispersion.

Tudorovskii approximated the desired continuous profile with discrete steps and

considered inserting a phase plate into an optical system to correct chromatic aberration.

Miyamoto also considered the spectral characteristics of "phase Fresnel lenses" and

investigated their ability to form aspheric wavefronts.

Madjidi-Zolbanine and Froehly4 discussed the use of a holographic optical element

(HOE) to correct both chromatic and spherical aberrations of glass lenses. They proposed

two methods for making the HOE: recording the interference pattern formed by two point

sources, and recording the interference pattern formed by the aberrated wavefront formed

by an optical system and the desired wavefront.



In 1988, Stone and George 5 investigated the use of holographic optical elements

with conventional glass elements to form a hybrid element with an arbitrary Abbe v-

number. As a special case, they considered hybrid achromats (v = Me) and three-element

hybrid apochromats. Faklis and Morris 6 provided a Fresnel diffraction analysis of an

imaging system containing three lenses of arbitrary dispersion. As a special case, they

described a system using holographic lenses to produce a well-corrected image in

broadband visible light. Twardowski and Meyrueis7 considered piano-convex and piano-

concave singlets with HOEs recorded in a coating on the plane surface. They also

provide a method of designing the optimal HOE for any singlet hybrid system.

Diffractive lenses have been used with success in the infrared region. Swanson and

Veldkamp 8 used a diffractive surface to correct both chromatic and spherical aberration

in the infrared region, thus eliminating the need for costly aspherics or an additional

refracting element. Foo, et.al., 9 Fritz and Cox,10 and Wood11 provided numerous design

examples.
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1.2. Overview of thesis

Chapter 2 addresses some of the basic ideas needed to design optical systems with

surface-relief diffractive elements. Section 2.2 includes a description of the surface-relief

structure, beginning with how it is constructed from the desired phase modulation, and

ending with a discussion of diffraction efficiency. The thin lens, or "Sweatt model" of a

diffractive lens is presented in Section 2.3. The thin lens model provides a convenient

means to design diffractive elements on conventional lens design software. Aspheric

wavefronts are considered, and equations are given which can be used to convert between

aspheric coefficients for the thin lens model, and higher order phase coefficients in the

phase function representation. It is also shown how the thin lens model can be used to

derive the Seidel aberrations of a diffractive lens.

Chapter 3 discusses the use of diffractive surfaces to achromatize refractive

elements. In Section 3.2, the results in Chapter 2 are used to analyze the effects of

aberrations on the point spread (PSF) and modulation transfer function (MTF) of an

achromat. It is shown how aberrations in one element of a doublet can be used to cancel

aberrations in the other element. The elements of a doublet can be decentered or tilted

with respect to one another during fabrication and the affects of these fabrication errors

are also considered in Section 3.2. It is shown how both decenter and tilt produce a shift

in the coordinates of the image, and how this shift is proportional to the magnitude of the

error. It is also shown how the aberrations in the elements of decentered or tilted

achromats no longer cancel. Section 3.3 provides two examples of achromat design. The

first is a conventional cemented achromat. With careful choice of glasses, it is seen that it

is possible to design a cemented achromat with no spherical or coma. An example of a

hybrid achromat is then considered. It is necessary to use the fourth-order phase

coefficient to correct spherical aberration, but with both bending parameters remaining as

degrees of freedom, a solution is readily found for a cemented hybrid achromat with no

3



spherical or coma. It is also shown that the curvatures on the glass element of a hybrid

achromat will be much less than on the crown element of the conventional achromat.

Spherochromatism is also considered, and seen to have a large effect on the PSF of the

hybrid lens.

Chapter 4 considers the application of hybrid diffractive/refractive achromats to

optical data storage (ODS) systems. Section 4.2 presents the design constraints and

performance goals. Design constraints include entrance pupil diameter, f/number,

working distance, and field of view. Design goals include a polychromatic Strehl ratio

greater than 0.96 over the full field, and a focal length change per wavelength change of

less than 0.1 .rm/nm over the wavelength band. A hybrid achromat meeting these

requirements is presented, and fabrication methods are discussed. Section 4.3 describes

common errors which may arise during fabrication. First, errors which affect the image

quality are considered, these include element misalignment and thickness errors, and

diffractive surface zone shrinkage. It is shown that the lens performs well within the

capabilities of existing technology. Next, errors which affect the diffraction efficiency

are discussed, including etch depth errors, and mask misalignment.
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Chapter 2

2. Diffractive lenses

2.1. Introduction

A diffractive lens, known in the literature as a kinoform, 1' 2 binary lens,3 '4'5 phase

Fresnel lens,6 or simply as a phase plate,7 ' 8 introduces a phase modulation across the

surface of the wavefront such that light passing through the lens will constructively

interfere at the focal point. This thesis is concerned with rotationally symmetric

diffractive lenses in which the phase modulation is introduced by a surface relief profile.

The depth of profile is chosen such that the maximum phase modulation is 27C at the

design wavelength. The shape of the profile is chosen to yield the highest efficiency

possible in the design order.

Diffractive lenses have many advantages which make them an attractive choice to

lens designers. One advantage is their extremely high, negative, dispersion.9 This unique

quality, which usually limits the use of diffractive elements to narrow bandwidths, allows

new possibilities for the achromatization of lenses. 6- 1 .0 11 Hybrid achromats tend to be

lighter and smaller then conventional achromats and offer the possibility of lower

f/numbers. Additionally, achromatization with a diffractive surface eliminates the need

for exotic glasses. Achromats made from common glasses such as BK7 and a diffractive

surface perform very well.9 Hybrid lenses are especially attractive in the infrared region,

where conventional materials are limited and can be expensive. 12

Another important feature is that diffractive lenses with the stop in contact have

zero field curvature and distortion. With a stop shift, coma and astigmatism can be

eliminated.13 Efficient diffractive lenses can be replicated from a master, thus

eliminating the need to polish glass elements. This is especially important considering
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the fact that aspheric wavefronts can be produced by diffractive lenses with little increase

in complexity.

Section 2.2 outlines the construction and diffraction efficiency of surface relief

diffractive lenses, including the phase function. The phase function defines a diffractive

lens in much the same manner in which a surface sag equation defines a refractive lens.

Section 2.3, describes the thin lens model of a diffractive lens. The thin lens model

provides a method of designing diffractive lenses on conventional lens design software,

even if the software is not designed to handle diffractive optics. The thin lens model also

provides a convenient means to derive the third order aberrations of diffractive lenses.

7



2.2. Surface-Relief Diffractive Lenses

2.2.1. Surface-Relief Structure

To construct a surface-relief diffractive lens, we recall that full period Fresnel zones

are spaced such that the optical path length from the edge of the jth zone to the focal point

is equal to fo+jXo, where Xo is the design wavelength, and fo is the desired focal length, as

in Fig. 2.2.1.

Fig. 2.2.1. Full-period Fresnel zone construction. The edge of each zone is one
wavelength, o, further from the focal point F than the edge of the preceding zone.

The radii of the exact Fresnel zones are given by

r = 2jX fo +(j.o) 2 , (2.2.1)

but in the paraxial region, where (j/4f0 ) << 1, the radii of the jth zone can be given by

r, (2.2.2)

To create a diffractive lens, material is added in each zone and the thickness of this

material is varied to introduce the correct amount of phase modulation such that all the

light passing through the structure constructively interferes at the focal point.

8



The correct surface-relief profile is obtained from the phase transmission function,

q(r), by noting that the OPD introduced by the lens is OPD = (Xo/27t)qp(r)I. Also,

OPD = [ns(ko) - 1]d(r), where ns is the index of the material, and d(r) is thickness of the

material at the radius r. By combining these two equations, we find that

d(r) = ( Xo ) I* (2.2.3)= ,2n n, (X.) - 1 .23

If the maximum phase to be introduced by the lens is 27r, then the maximum surface

height is

dma ° (2.2.4)
n(X- 1

Dammann 14 and Buralli, et. al. 15 showed that for a phase function described here as

(p(r) = 2a{ - 2rf , for rj < r <rj+1, (2.2.5)

where the parameter a is the dephasing due to wavelengths other than the design

wavelength X0, or

X.[n(.)-1] (2.2.6)

a change of variables = r2/(24fo) transforms the phase function into

() = a2n(j - forj < <j+l. (2.2.7)

9



Furthermore, since the transmission function, t(t) = exp[ip(t)], is now periodic, it

can be expressed as a Fourier series, ie:

t( ) = exp[i(p()] = Xc. exp(i2man ) (2.2.8)

where

exp[-i(c + ) sin[c((a + m)]. (2.2.9)
m = (a + m)

We would like positive values of f, and positive orders of n to correspond to converging

diffracted orders. Therefore, we change m to -m and reverse the order of summation.

The result, with the reverse substitution for , is

t(r) = =-exp[-in(a - m)]sinc(a - m)exp (2.2.10)

where

sin c(x) -= sin(7rx) (2.2.11)
7rx

By comparing Eq. (2.2.10) with the Fourier optics definition of a transmission

function for a refractive lens,16 ie:

t(r),, = exp( - , (2.2.12)

the diffractive lens is seen to behave like a refractive lens with an infinite number of focal

lengths:

10



=dif ---. (2.2.13)

mx

In general the phase function (p(r) can be written as

(p(r) = 2n(Ar2 + Dr4 + Er' + Fr' + GrlO+...), (2.2.14)

where A, D, E,... are the higher order phase coefficients. Until now, we have only been

discussing the paraxial regime, where

1
A -- (2.2.15)

2X.fo

and the higher order coefficients are all zero. The paraxial diffractive lens described

above, therefore, has a parabolic blaze. Giving value to the higher order coefficients

varies the zone spacing, and has the same effect as adding aspherics to a refractive

surface-that is, the higher order phase coefficients can be used to correct field

aberrations.

2.2.2. Diffraction Efficiency

Diffraction efficiency is a measure of how much of the incident light constructively

interferes at the desired focal point. Light that does not interfere constructively at the

focal point manifests itself as background light (or noise) in the focal plane, and

decreases the MTF of the lens.

For a paraxial diffractive lens with a quadratic blaze, the diffraction efficiency is

given by15

11



TI(.,m) = cc* = sinc 2 (a- m), (2.2.16)

where Cm is defined in Eq. (2.2.9). The design order is the first diffracted order, m = 1,

and from Eq. (2.2.16), the diffractive lens is seen to be 100% efficient when the design

wavelength is used, i.e., when a = 1. For a diffractive lens made of PMMA, Eq. (2.2.16)

takes the form shown in Fig 2.2.2.

100-

8 0 .................................................................................................................................

6 0......... ..... , -m = .--............. ....................... ............................. ...... .....................................

C
4 0 60 ......----------- 

....

S 20 ...... .m = 2 ..... .............. ..................

0.4 0.5 0.6 0.7 0.8

Wavelength (jm)
Fig. 2.2.2. Scalar diffraction efficiency for a lens made of PMMA. As X varies from the
design wavelength, X0, the efficiencies in the m=0 and m=2 orders increase.

If wavelengths other than the design wavelength are incident on the lens, then the

efficiency in the design, or first, order decreases, and the efficiencies in the Oth and 2nd

orders increase.

Frequently, the quadratic blaze is approximated with a staircase, as in Fig.. The

phase function for a staircase profile with p steps is described as14

2an
(p(r) = - (p - k), (2.2.17)

P

12



for kd , r (k + 1)d k = 0, 1, 2 .... p- 1,P P

where d is a period and a is defined by Eq. (2.2.6). The diffraction efficiency can be

found by again describing Eq. (2.2.17) as a Fourier series and proceeding in the same

manner as above. The result is

sin 2("msin 2[7r(a) _ in)]

i~a~~m = (inn) 2 sin 2 Zp (a - in)] (..8

where, again, i is the order number. For a multi-level diffractive lens made of PMMA,

Eq. (2.2.18) takes the form shown in Fig..

100-............................. . . . . .--- . .

6 0 . .............. ..... ...................................... ..... .... . ....... ........................................ ...........................................

20

0.4 0.5 0.6 0.7 0.8
Wavelength (im)

Fig. 2.2.3 Scalar diffraction efficiencies for multi-level lenses made fo PMMA. The
diffraction efficiency increases with the number of steps, p.

For ax = 1, Eq. (2.2.18) can be greatly simplified to yield

13



sin c1'
Tl(p,m) (P), when m-1 =g•p,

and (2.2.19)

Tj(p,m) =0 otherwise,

where g is any integer. Except where noted, a quadratic profile is assumed for the

remainder of the discussions in this thesis.

Buralli and Morris17 analyzed the effects of unwanted orders of a diffractive lens on

the MTF of the lens. They define an important, and convenient, measure of the efficiency

of a diffractive optical element called the integrated efficiency. This parameter serves as

the limiting value for the MTF, that is, the MTF tends towards the integrated efficiency

rather than unity at low spatial frequencies.

In general, diffraction efficiency is a complicated function of zone spacing, incident

angle, wavelength, etc. Therefore different local efficiencies can exist over the surface of

the element. If the pupil function of a diffractive lens is given by

.k + tBG(u, v)exp i k WBG (Uv) (2.2.20)

where tm=l is the transmission function for the first diffracted order, and tBG is the

transmission function of other diffracted orders, which give rise to background light, then

the local efficiency is given by

o (u, v) = Itm., (u, v) 2. (2.2.21)

The integrated efficiency defined by Buralli and Morris is the pupil-averaged local

efficiency, or
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T = li I, (u,v)du dv, (2.2.22)

where Apupil is the area of the exit pupil, and Tjiocal(u,v) - 0 for points outside the pupil.

For polychromatic applications, Tlijt,oy is found by integrating over the wavelength

band

X, minm~Rd
=£% % 1= - (2.2.23)

where Tlint(k) is the pupil-averaged efficiency for each wavelength.

For diffractive lenses where the f/number is greater than 10, the zone spacing can be

considered large compared to a wavelength of light, and scalar diffraction theory is

valid.18 In this case the local efficiency is assumed constant over the surface of the lens,

and the integrated efficiency is equal to the scalar efficiency. The integrated efficiency is

therefore given by Eq. (2.2.16). Integrating Eq. (2.2.16) over the wavelength band yields

the following approximate expression for the polychromatic integrated efficiency in the

first order, m = 1:

,. - , (2.2.24)
11it'Ply 361 O)

where AX is the wavelength band centered on the design wavelength X0. Figure 2.2.4

shows the effect of AX on the integrated efficiency.
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"5 0.98 - 587.56nm

Xo - 656.27nm. 0.97-

0.96

0.95 -4:
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Fig. 2.2.4. The effect of wavelength band on the integrated efficiency. The center
wavelengths shown are X0 = F, d, and C lines, as well as the center of the 3-5gm and
8-12pm bands.

Show in Fig. 2.2.4 are plots for X0 = 0.4861gm (C line), 0.5876gm (d line),

0.4861gm (F line), 4gm, and 10gm,. As the design wavelength Xo increases, the effects

of the bandwidth AX on the integrated efficiency decreases. In the infrared regions, the

wavelength band has a negligible effect on the integrated efficiency.

Buralli and Morris also show that the integrated efficiency is an overall scaling

factor for the OTF, that is

OTFff,) = J1 - P.., (u, v) ® P, 1 (u, v) du dv
\._.yJJIt==(u,v)2 dudv

where @ is the autocorrelation, and Bb is the Kronecker delta. From Eq. (2.2.25) we see

that the OTF is scaled by 7lint except at (fx,fy) = (0,0) where the OTF = 1. Figure 2.2.5

shows a plot of the MTF of a diffractive lens with ko = 10gm and AX = 4gm.
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2.3 Thin lens model

2.3.1. In optical design software

Sweatt 19 and Kleinhans 20 showed that a diffractive lens and a thin lens with an

infinite index are mathematically equivalent. When designing diffractive lenses, it is

often advantageous to utilize this thin-lens model, however, with lens design programs,

an infinite index is not possible. For the majority of applications, however, a value of

ns(?o)=10,001 works well. 21 From Eq. (2.2.13) we see that the power of a diffractive

lens is a linear function of wavelength, so the index of refraction, ns, of the model lens

must be scaled accordingly, as in Eq. (2.3.1),

n,(X) = T (n.(ko)- 1)+ 1, (2.3.1)

where X is the design wavelength. This equation can in turn be substituted into the

familiar Abbe v-number formula

V n1(k)- n1 (k 1)' (2.3.2)

where Xs, Xm, and Xl, are the short, middle, and long wavelengths, respectively, to find

an expression for the v number of a diffractive lens. This expression is found to be

'Udd - (2.3.3)
X. -)L

For visible light, using the F, d, and C lines, the v number of a diffractive lens is found to

be Vd = -3.45. Since conventional glasses have v numbers which fall between'20 and 90,
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the diffractive lens is much more dispersive than glass and in the opposite direction,

indicating that a low-power, positive diffractive lens might be used to achromatize a

positive refractive lens.

The surface curvatures of the thin lens model must be chosen to give not only the

correct power, but also the proper bending parameter, or shape to the lens. Welford22

defines the bending parameter, B, as

B = c1 + c2  (2.3.4)
C1 -C 2

where cI and c2 are the surface curvatures of the thin lens. As n-> cc, however,

cl -> c -> cs, and the bending parameter given by Eq. (2.3.4) becomes indeterminate.

Buralli2 defines a new bending parameter, B', as

BO B _ cI + c 2  - c1 +c 2  (2.3.5)
n-1 (n-1)(c, -c 2 )  0

where 0 is the power of the lens. As n -> -c, Eq. (2.3.5) becomes

B' = 2c (2.3.6)

where cs is the curvature of the diffractive lens substrate. Equation (2.3.6) remains finite

with an infinite index, and is used with the thin lens equation to find the correct surface

curvatures of the thin lens model. The results are

cn 0- (B+ (2.3.7)

and
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(B-n -(2.3.8)
2 n,-1)

Additionally, if the higher order phase terms in Eq. (2.2.14) are non-zero, one of the

surfaces of the lens model must be aspheric. Since the model is assumed to have zero

thickness, which surface is aspheric is immaterial. We assume a surface sag of the form

cr 2  d4+el+fl+g
z(r)= +d + r (2.3.9)

which can be expanded in a Taylor series (to tenth order) as

z(r) =-r' +r( c +dr+( +er6+(5+f r + 7c+gir. (2.3.10).
2 8 ) 16 ) 128 ) (,256 2

The additional optical path introduced by the surface of the refractive surface described in

Eq. (2.3.10) is equal to -An z(r), where An = ±(ns-1) is the change in refractive index at

the surface. The plus or minus sign for An depends on whether the aspheric surface is on

the front or back surface of the lens. If the phase introduced by the diffractive lens is

given by Eq(2.2.14), the additional optical path introduced by a diffractive lens is

(Xd27)p(r), or more explicitly,

OPDdif = X--.cp(r) = X.(Ar2 + Dr4 + Er6 + Fr' + Gr"). (2.3.11)

By equating terms in Eqs. (2.3.10) and (2.3.11), we see that the aspheric coefficients for

the model lens are defined by
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on (c3
D -" { +d, (2.3.12a)

E = - ( k16+e), (2.3.12b)

F = -An (7+ f, (2.3.12c)
X. 128

G = - + 5 g . (2.3.12d)
X. t256

Diffractive lenses are often designed on planer surfaces, to simplify fabrication. In

this case, the curvature terms, cn, in Eqs. (2.3.12) are negligibly small compared with the

aspheric coefficients, d, e, f, and g. Equations (2.3.12) provide a convenient way to

convert between the phase function and thin lens representations of a diffractive lens, and

are especially useful when implemented as a macro in optical system design software.

OSLO, for example, provides two Star commands, SWEATT2DFR and DFR2SWEATT,

which use the above equations to convert between the Sweatt and phase models of a

diffractive surface.

2.3.2. Third order aberrations

A convenient method to derive the third-order aberrations of a diffractive lens is to

use the thin-lens model described in section 2.2.2. The third-order aberrations of a

diffractive lens can be found by beginning with the third-order aberrations of a thin lens

and allowing the index to approach infinity.1 3, 19, 20, 23 The third-order wavefront

aberration polynomial, W, as a function of normalized object height, h, and normalized

polar pupil coordinates p and 4 p, is24

w/h p cos I SJp + Shp 3 coso0 + Io 4po +
S8 22

I (S+ )h'p +- v S pcos 1
4 2 (2.3.13)
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where the Seidel sums, SI-Sv, for a thin lens with the stop in contact are given by

(Spherical aberration)
y, = y n+2 B2+4(n+1) B 3n+2 T 2+ 8G4n)12..1a

4-- In(n 1)2 +n(nl- B~ 1) n +8y(A)(..1a

(Coma)

S= - y22H n+l B+2l-+T], (2.3.14b)2 n(n -1) n J

(Astigmatism)

Sm H2 , (2.3.14c)

(Petzval curvature)

S- H2  (2.3.14d)
n

(Distortions)
Sv = 0. (2.3.14e)

In Eqs. (2.3.14a)-(2.3.14e), n is the refractive index, y is the marginal ray height, 4 is the

power of the lens, H=-Uy is the Lagrange invariant, G is the fourth-order aspheric

coefficient, An is the change in refractive index on passing through the lens, B is the

bending parameter (Eq. (2.3.4)) and T is the conjugate parameter, defined as

U+U'
T = - , (2.3.15)

u - 1"

where u and u' are the paraxial ray angles for the marginal ray entering and exiting the

thin lens.

To find the Seidel coefficients for a diffractive lens, the limits of the above

expressions are taken as n -> -0 and as cl and c2 -> cs; it then becomes necessary to use

the bending parameter, B', given in Eq. (2.3.6). Additionally, the SI term must take into

account any additional OPD introduced by the fourth order phase coefficient D. The

resulting Seidel sums, for a diffractive lens with stop in contact, are13
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(Spherical aberration)

S1 -Y -O[B 2 + 4B'T +.3T 2 +1]- 8DXmy4 , (2.3.16a)
4

(Coma)
Sn= Y2  [B'+2T], (2.3.16b)

(Astigmatism)

Sm = H20, (2.3.16c)

(Petzval curvature)

Sw = 0, (2.3.16d)

(Distortion)

Sv = 0. (2.3.16e)

From Eqs. (2.3.16d) and (2.3.16e) we see that a diffractive lens with stop in contact

has no Petzval or distortion. Although a stop shift will not be considered in this thesis,

Buralli and Morris 13 show how it can be used to eliminate coma and astigmatism,

although it will introduce distortion. In chapter 3, the above equations will be used with

Eqs. (2.3.14) to design a hybrid diffractive/refractive achromat with zero spherical or

coma. In the design of diffractive lenses, the power 0 and conjugate parameter T are

usually specified, leaving the bending parameter B' and the fourth order phase coefficient

D as the remaining degrees of freedom. As will be seen in chapter 3, B' and D, along

* with the bending parameter of the refractive element, provide enough degrees of freedom

to design a cemented hybrid achromat with no spherical or coma.
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2.4. Summary of Chapter 2

In this chapter we surveyed some of the basics needed to design diffractive lenses.

In section 2.2, the diffractive lens and how it is described mathematically was reviewed.

Beginning with full-period Fresnel zones, it was shown that a quadratic phase function

could yield 100% scalar efficiency in the first order. In general, however, the efficiency

will not be constant across the surface of a diffractive element, nor will it be constant

over a bandwidth. In these cases, a useful parameter to use is the integrated efficiency. A

simple formula was presented for the polychromatic integrated efficiency when the

diffractive lens has an f/number greater than about ten. This is almost always the case

when the diffractive lens is used for achromatization.

Section 2.3 described how to model a diffractive lens as a very thin lens with an

infinite refractive index. The thin lens model is useful when designing diffractive

elements on conventional lens design programs. A good approximation to an infinite

refractive index in a lens design program is about 10,000 for the design wavelength. A

formula was presented for calculating refractive indices at other wavelengths. We then

showed how to convert between the phase function representation and the thin lens

model, giving formulae for surface curvatures and aspheric coefficients. Finally, the thin

lens representation was used to derive the Seidel coefficients for a diffractive lens. The

Seidel coefficients for a diffractive lens can be used the same manner as those for

refractive lenses when designing achromats.
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3. Diffractive/refractive achromat design

3.1. Introduction

The idea of using a diffractive surface to achromatize a refractive lens is not new.

Sliusarev, 1 Tudorovskii, 2 and Miyamoto 3 discussed the idea that a "phase plate" or a

"phase Fresnel lens" might be used to correct longitudinal aberration. Madjidi-

Zolbanine, 4 Stone and George, 5 Faklis and Morris,6 and Twardowski and Meyrueis 7

discuss achromatization with holographic lenses. This chapter discusses the use of

rotationally symmetric, surface-relief diffractive lenses in achromatization. The approach

we will take is the traditional approach to designing an achromatic doublet.

The design method for an achromatic doublet is well known.' 9' 10 If the doublet is

not to be cemented, then there are enough degrees of freedom to correct both spherical

and coma. With careful choice of glasses, however, a cemented doublet with no, or very

little, spherical and coma can be designed. For the treatment in this chapter, we will

consider only a positive doublet made of thin lenses with the main focusing elements in

front, as in Fig. 3.1.1.

element I element 2

Fig 3.1.1 Schematic of an achromatic doublet.

Aberrations manifest themselves as phase errors in an optical system. Using

equations presented in Section 3.2, the effects of third-order aberrations on the point

spread function (PSF) and modulation transfer function (MTF) of a doublet are discussed.
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Section 3.2 uses a wave propagation approach to discuss how decentering or tilting one of

the elements with respect to the other affects the doublet's PSF and MTF. Section 3.3

provides two examples of how achromats are designed using equations described in the

previous chapter. First a conventional achromat with minimal spherical and coma is

designed, and then the method is extended to design a hybrid diffractive/refractive

achromat.
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3.2. Effects of aberrations on PSF and MTF

3.2.1. Third order aberrations

The point spread function of an optical system is defined as the modulous-squared

Fourier transform of the system pupil function: 11

PSF(x,y) = I P(4,r)exp[-i (x + yrl) d d2 (3.2.1)

where P(,ij) is the pupil function and x and y are image plane coordinates. Constants,

which serve only scale the PSF, have been dropped from Eq. (3.2.1). The modulation

transfer function can be defined as the modulous of the Fourier transform of the PSF:12

if f - PSF(x, Y) exp[-i2t(xf. + yf, )] dxdy
MTF(ff)PSy) x= y (3.2.2)

The wavefront aberration W(h,p,cosop) defined by Eq. (2.3.13) introduces a phase

modulation across the pupil in a manner described by,

= A(4,Tj)exp[ikW(hti)], (3.2.3)

where A({,Tj) is unity for points inside the aperture and zero for points outside the

aperture, k = 2t/k, and W(h,t,rl) is given by Eq. (2.3.13) with the change of variables

= p sino, and 1 = p coso. From Eq. (3.2.3) it is seen that aberrations introduce phase

distortions in the pupil, and in general this will lower the contrast in the image.13 One

important point should be made regarding Eq. (3.2.3). There is a field dependence, h, in

W which does not appear in P. This is because the Fourier transforming property of a

lens is based on a spatially invariant system. A system with aberrations is not spatially
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invariant. Therefore, the PSF can be found at only one object point at a time. There is

little more that can be said about the effects of aberrations on the PSF and MTF of a lens-

Eqs. (3.2.1) and (3.2.2) are so complicated that PSF and MTF calculations are always

carried out numerically.

As an example, we will look at the PSF and MTF of an f/5, 50mm focal length,

planer diffractive lens, paraxial zone spacing, 100 half field of view, and an infinitely

distant object. The Seidel coefficients can be calculated using Eqs. (2.3.16). The

resulting values are

S= = 8.51OX (3.2.4a)

Su = -15.005X (3.2.4b)

SIII= 26.458X (3.2.4c)

SV = Sv = 0.0 (3.2.4d)

The PSF's for the on axis (h=O) and full field (h=l) cases, at the paraxial image

plane, are shown in Fig 3.2.1.

0.10-

0.08-

On axis
- 0.06- 

On axis

5 0.04-
100 - Tan 100 - Sag

0.02-

0.00 - -006.... j ..-. -

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
Radius (mm)

Fig. 3.2.1 Point spread functions for an f/5, 50mm focal length, planer diffractive lens
with paraxial zone spacing. The half field of view is 100, and the object is at infinity.
The plot has been normalized so that the peak value for an unaberrated wavefront is 1.0.
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The reference wavelength for Fig. 3.2.1 plot was chosen to be the d-line

(X0 = 0.58756g.m). The data was normalized so that the peak value for an unaberrated

wavefront is 1.0. The MTF of the same lens can be found with Eq. (3.2.2). The results

are shown in Fig. 3.2.2.

1.0-

0.8 -

Diffraction limit

0.6 - On axis
I-

0.2-

0.4- --- 100 - Sag

0.2- 100 - Tan

0 50 100 150 200 250 300

Spatial frequency (lines/mm)

Fig. 3.2.2 Modulation transfer functions for the lens described above.

As expected, the aberrations cause a reduction in the peak value of the PSF and a

decrease in the resolution, or MTF of the lens as well.

For an achromat, where there are two elements with different transfer functions, we

take pupil function to be the product of the pupil functions of the individual elements, P1

and P2. The pupil function of the nth element is given by

Pn( ,71) = An(,Tl)exp{ik Wn(h, ,ri)}, (3.2.5)

where An is the aperture function, and Wn is the wavefront error. The two element

system shown schematically in Fig. 3.2.3.
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Pupil Plane AL Image plane x

Fig. 3.2.3 Schematic of achromatic lens. The two transfer functions t1( ,Tl) and t2(4,Tl)
are taken to have zero space between them.

In Fig. 3.2.3, the transfer functions, tn(,jT), of the nth element are given by

tn( ,ii) = Pn(4,71)exp(iknnAn)ep[-2-k (42 +i12)] (3.2.6)

where fn and An are the focal length and thickness of the nth element, respectively. We

will assume thin lenses, with no space between the transmission functions of the first and

second elements. The PSF of this system can be expressed as

PSF(x,y) =

JJ I~ r1 i~ 1 hXf Wh~A)dd1 2  (3.2.7)

and the MTF is again given by Eq. (3.2.2). As seen in Eq. (3.2.7), the aberrations of one

element of the achromat can be used to compensate for aberrations in the other element

by choosing W2 (h, ,1) = -Wl(h,4,rI). The achromats designed in sections 3.3.1 and 3.3.2
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provide examples of how spherical and coma can be eliminated by balancing the

aberrations in each element against each other.

3.2.2. Decenter and Tilt

In addition to the third-order aberrations, doublets can also be affected by

fabrication errors such as decenter and tilt, shown schematically in Figs. 3.2.4 and 3.2.5.

For the case of decenter, the elements of the doublet have transmission functions

given by

t1 (,71)= P, ( ,1)exp(iknA 1)exl{_(t2 + 112)], (3.2.8)

and

t2(t,1)= P2( + A ,1 + Ai)exp(ikn2A2)ex{-AS ((t + A +)2 ( + A1)2 (3.2.9)

where Pn is given by Eq. (3.2.5), and A4 and A1 are the shift of the second element with

respect to the first in the t and T1 directions, respectively. The incident field, UO(t,11), is

taken to be a plane wave, ie. UO(t,71) = 1. The field leaving the second element is given

by

U2(,11) = U0(,1)t ( ,1()t2 (,1). (3.2.10)
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Pupil plane

n z

Fig. 3.2.4 Schematic diagram of two decentered transmission functions. The amount of
decenter in the 4 axis is given by At; decenter in the T1 axis is given by ATI (not shown

above). The image plane is the paraxial image plane with At - Ail = 0.0.

Pupil plane A Image plane x

a

Fig. 3.2.5 Schematic diagram of two transmission functions with tilt or "wedge" between

them. The magnitude of wedge in the 4 axis is given by the angle a; tilt in the T1 axis is
given by f3 (not shown above). The image plane is the paraxial plane with c c - 0.0.
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A Fresnel propagation yields the following field distribution in the paraxial image

plane:

Ui(x, Y) = Jf P1 (t,T7)P 2 ( + A ,Tl + Al) x

expik l 712)-L(+ t+ _.L (1+ A7)2 1
~~~~ ik +2~ + ~ 2 + f

exp~(2 +n)]exp[- ik( x + tjy)]dtd1
L2F F . (3.2.11)

where F is the focal length of the doublet. Terms involving the thicknesses of the

elements in Eq. (3.2.11) have been ignored since they can be carried outside the

integration, and will disappear when the intensity is found.

Since we are working with thin lenses, the relationship

1 (3.2.12)

f, f2  F

is valid, and Eq. (3.2.11) can be simplified to yield the following:

Ui(x,y) = f P* (t, 7)P2 ( + A , 7 + Ail)x

exp[-Ak (2 + At 2 + 2TIATI + AT12)exp['- ( x
L 2 f2 F (3.2.13)

The AJ 2 and A112 terms can be carried outside the integral and will have no effect on the

functional form. Neglecting these terms, Eq. (3.2.13) now takes the form
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Ui(xy) = f P1(,T1)P 2 (4 + A4,T1 + All)

exp[-k4A + - + Hexp[ '-_ ly]d ~)f) [ F Tf2 YL)d ] (3.2.14)

which is simply the Fourier transform of the product P1P2 with the frequency variables

ft x) and f,, j{4ll-+ ) (3.2.15)Xt - f2 Fadf= f2 F)

If the second element of a doublet is tilted with respect to the first, the transmission

functions become

tg(o,) = lP,( ,i1)exp(ikn,A,)ex- ik (42 + T1 (.216
= 2f + (3.2.16)

and

t T) = P exp(iknA 2 )exp _ ] (3.2.17)(Cosa' osp) 2 2 f2 kt cos a  cs

where cc and f3 are tilts about the Tl and 4 axis, respectively, as in Fig. 3.2.5.

Tilting one lens with respect to the other also introduces a phase error due to the

space between two. Since the two lenses are so close together, the field incident on the

second lens will be the geometric projection of the first, multiplied by a linear phase term.

The transfer function of this wedge is given by

t,,p(t, 1) = exp[-ikn,( tan a + 'iltan 13)] ,  (3.2.18)

where n is the index of the material in between the lenses. If the field incident on the first

lens is given by Uo, then the field leaving the second lens is
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U( = U t (3.2.19)

We will consider angles which are less than 0.25'. This is within the capabilities of

modem technology, and it will also make the mathematics involved much easier. If the

angle a <0.250, then cos(a) > 0.99990. Taking cos(a) = cos(P) = 1, Fresnel propagating

to the paraxial image plane and simplifying yields

Ui(x'y) = ff P('Rr)P 2 (t + At,"11 + All)

exp[-ik(<(tan a + F + rltan p + Y))]exp[ - " (Rx + 1y)]d d1 (3.2.20)

where again, coefficients outside the integral which only serve to scale the PSF have been

dropped. The field at the image plane is found to be the Fourier transform of the product

PiP2, but with the frequency variables

fk= tana+.X) and fl= (tan 3+ . (3.2.21)

It is trivial to show that if decenter and tilt are combined, the point spread function

is given by

PSF(x,y) = IF.TI{P(, 1i) x P2(t,1)1 2, (3.2.22)

where F.T. { means the Fourier transform whose frequency variables are given by

f=2{ -I tana+J and f=. ,!+tanP+ F  (3.2.23)
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The two pupil functions P1 and P2 in Eq. (3.2.22) must be redefined. P1 can be

defined just as in Eq. (3.2.5), that is,

P, 11) = A, (,7) exp[ikW (h 4,t 7)]. (3.2.24)

Taking into account the effects of decenter and tilt, the pupil function of the second

element of the doublet P2 is given by

P2(4,il) = A + At,Tl + AT1)exp[ikW 2(h2,4 + A4,TI + Al)], (3.2.25)

where, if 0 is the half field of view, h2 is given by

=arctan[ ltan z(a + 7h) + ta3](32.6h2 =(3.2.26)

Equation (3.2.26) is derived by calculating what additional field angle is introduced by

the tilt angles a and J0, given the existing field angle h1 0.

Substituting Eqs. (3.2.24) and (3.2.25), into Eq. (3.2.22) we find the following

expression for the PSF of a doublet:

F.T.{A, ( , l)A2 (4 + A,r1 + x 2

PSF(x,y) = exp[ik(W (h,,4,i) + W2(h2, + A4,1 + AT))]} (3.2.27)

From Eq. (3.2.27) we see that aberrations in each element of a doublet no longer cancel if

one of the elements is decentered or tilted with respect to the other. For this reason, it is

advantageous to correct aberrations as closely as possible to their origins.
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3.3. Thin lens examples

3.3.1. Conventional achromat

In the method described below, we begin with Eqs. (2.3.14a) and (2.3.14b). To

make the design process easier, we write these equations, without any aspherics, as

(Spherical aberration)

Sli = -±±t [aj B + bjBjTj + cjT,2 + d] (3.3.1)

(Coma)

SII= 2 1 [ejBj + fjTj (3.3.2)

where the coefficients a-e are defined by

nj +2 4(nj + 1) 3nj + 2
a n(n j - 1)2  b = nj(nj- 1)' ,c- n=

=n-+1 2n. +1
d nj I , ej - , fj= -- (3.3.3)j ,nj-l _jn - )H

where the subscript j denotes which element of the doublet the parameter belongs to, see

Fig. 3.1.1.

If (D is the desired power of the achromat, and v I and V2 are the dispersions of the

two elements, then the constraints for an achromat formed by two thin lenses in contact

are given by

(Correct total power)

1 +02 = D, (3.3.4)

(Achromatic condition)
.. + 2 = 0, (3.3.5)
V1  V2

(No spherical)

S11 + S12 = O, (3.3.6)
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(No coma)

Su + Sa2 = 0, (3.3.7)

(Cemented constraint)

C12 C21 Ol (B -I)= )02 (B2 +1) (3.3.8)
2(n - 1) 2(n2 -1)

where C12 is the second surface of the first element and C2 1 is the first surface of the

second element.

Combining Eqs. (3.3.4) and (3.3.5) yields the following expression for the power in

each element
41 V1  (D and 02 v2 (D. (3.3.9)

V1 -V 2  V2 -VI

For two thin lenses in contact, the height of the marginal ray is equal for both lenses,

YI = Y2 = y, and substituting Eq. (3.3.1) into Eq. (3.3.6) and simplifying yields

41[a1Bl + b1BT 1 + cT 1
2 + dl] +¢2[a 2B2 + b2B2T2 + c2T2 + d2] = 0. (3.3.10)

The powers of the elements, 4)I and 02, are given by Eq. (3.3.9) and once the glasses are

selected, aj - ej are known as well. From the conjugate, T, of the lens as a whole, we can

find the individual element conjugates from the following expressions

T=-(T+1)-I and T2 =-(T-1)+I. (3.3.11)

The remaining degrees of freedom in Eq. (3.3.10) are the bending parameters B1

and B2 . Solving for B2 yields the following expression

3 2+03 +3 2 B

02a 2B2 + 42b 2T2B2 + 22(c2T2 + d2) + [aB + b1 BT , +cT 2 +d,] = 0, (3.3.12)
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which is now in the form

aB2 + JB 2 +Y = 0 (3.3.13)

and can be solved with the quadratic equation. Note that the B1 dependence is buried in

the parameter y. An example of B2 as a function of B1, defined by Eq. (3.3.13), is plotted

in Fig. 3.3.1. The doublet is an f/4 achromat with BK7 for element 1, F8 for element 2,

and a focal length of 100mm.

Equations (3.3.7) and (3.3.2) can be used in a similar fashion to find the proper

bending parameters which result in no coma for the doublet. Following the same

procedure as above and solving for B2 results in the expression:

(2 + f1T) + 0f2T
B2 = e e2  (3.3.14)

Equation (3.3.14) is also plotted in Fig. 3.3.1

Solving Eq. (3.3.8) for B2 yields the following relationship

B= (n-1)( - 1)-i1, (3.3.15)
02 (n2 -1)

which is plotted in Fig. 3.3.1 as well.
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Fig. 3.3.1 The loci of bending parameters where there is no spherical or coma, and where
the cemented condition is satisfied. There is no guarantee that all the plots will cross at
one point.

From Fig. 3.3.1 we see that there are two combinations of bending parameters

where there is no spherical or coma. With a different choice of glass, however, there is

no guarantee that even one will exist. The same can be said for satisfying the cemented

condition. With this choice of glass, there is one cemented doublet which has no

spherical or coma. From the expanded view in Fig. Fig. 3.3.2 we see that the correct

bending parameters are B1 =-0.35 and B2 = 1.55.
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Fig. 3.3.2 Close-up of cemented doublet solution for no spherical or coma.

Equations (3.3.9) and (2.3.4) can be used to find the curvatures of the first and

second element. The results are

C11 =0.01616mm-', (3.3.16a)

C12 =-0.03357mm-1 , (3.3.16b)

C21 = -0.03361mm -1 , (3.3.16c)

C= -0.00725mm -1, (3.3.16d)

where C11 and C 12 are the first and second curvatures of first element, and C2 1 and C2 2

are the first and second curvatures of the second element, respectively. These values

result in -0.23k of spherical aberration, and O.Ol of coma. The curvatures given above

provide a good starting point for the final design, to be completed with the help of a lens

design program.
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3.3.2. Hybrid achromat

A diffractive/refractive hybrid achromat can be designed with the same process as

above with only a few modifications. The bending parameter B2 = B' for the diffractive

lens is defined by Eq. (2.3.6), and the Seidel coefficients for spherical and coma are

defined by Eqs. (2.3.16a) and (2.3.16b). At first we will neglect the higher order phase

term.

Analogous to Eq. (3.3.12), the expression for no spherical aberration in a hybrid

lens is

01B2 + 14T2B2 + (3T2 + ) + 4 [a1B2 + bB 1T + cT 2 +d1 ] = 0. (3.3.17)

Because v = -3.45 for a diffractive lens, the power in both elements of a hybrid

achromat will be positive, according to Eq. (3.3.9). Additionally, the power in the

diffractive element will be extremely low. For these reasons, solving Eq. (3.3.17) using a

BK7 for the refracting element will produce imaginary numbers for B1. In fact, the same

is true no matter what glass is chosen. At infinite conjugates, therefore, a paraxial

diffractive element cannot correct the spherical aberration produced by the refractive

element of a hybrid achromat.

To correct this problem, one surface of the glass element can be aspheric, and used

to correct the spherical aberration in both lenses. This makes the refractive element

significantly more complex, since aspheric surfaces are more difficult to fabricate. This

option is attractive, however, because as seen in Eq. (3.2.27), if each element corrects its

own aberrations, it eases the tolerances on decentering and tilt.

Another method to correct spherical aberration, equivalent to using an asphere, is to use

the fourth order phase coefficient, D, in the diffractive surface. The value of D can be

found quite easily by equating Eqs. (2.3.14a) and (2.3.16a). Of course, both bending

parameters remain as free variables, but if we look at only the cemented. achromat
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solutions, then B2 is determined by B1 . With B2 defined by Eq. (2.3.6), the cemented

requirement becomes

C12  cS 01 -'(BI -i1)-= B22 (3.3.18)
2(n, -1) ' 2

where C12 is the second surface of the refracting element, and Cs is the curvature of the

diffractive lens substrate. Solving Eq. (3.3.18) for B2 yields the expression

B2 = L (B -1) (3.3.19)
B 2 (n, -1)'

This expression can be used to find D. The net result-is

02[€ (BI -1) 2 +41 (B1) 

01[aB, + b1BT + cT 1
2 + d,] + 2, [ ( + 1) 2  ,2 -)T + 3T2 +1

D= 2 (1) 0 (n - ) 2 (3.3.20)
32)L0

Unlike spherical aberration, real solutions exist for the coma and cemented

requirement. The equation defining the solutions for no coma is

02(,B + fITI) + 0 2T

B2  € (eB, 3f 22T 2  (3.3.21)

and the requirement for a cemented doublet is given by Eq. (3.3.19).

Plots of Eqs. (3.3.19), (3.3.20), and (3.3.21), are shown in Fig. 3.3.3. As seen on

the graph, a solution exists at B1=0.90, B2=-3.6 and D=-0.417x10-3mm-4 .
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Fig. 3.3.3 Plot showing solution for a cemented hybrid achromat where SII=0. Also
shown is the value of D, fourth order phase coefficient for the diffractive surface, which
is needed to correct spherical aberration.

Equations (3.3.9) and (2.3.4) can again be used to find the curvatures for the BK7

element, and Eqs.. (2.2.16) and (2.3.6) can be used to find the second-order phase

coefficient, A, and the substrate curvature, Cs, respectively. The results are

C11 0.01744mm - , (3.3.22a)

115

C12 =-0.00092ram - , (3.3.22b)

C s = -0. 00092ram - ,  (3.3.22c)

-8-2

A = 0.4340mm -2  (3.3.22d)
D = -4.17 x 10-5 mm 4.  (3.3.22e)

These values result in 0.0), of spherical aberration and 0.0 , of coma. Much better

performance is expected with the hybrid than with a conventional doublet'because a
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fourth-order phase coefficient was used. The equivalent for the conventional doublet

would be to use an aspheric surface. While this would greatly increase the complexity of

the conventional doublet, a fourth-order phase coefficient can be added to the diffractive

surface without significantly increasing fabrication difficulties.

Comparing the above equations with Eqs. (3.3.16a) reveals one of the advantages of

hybrid achromats. While ClI, the curvature on the front surface of the BK7 'element, is

almost the same for both achromats, the second curvature of the BK7 element in the

hybrid example is about 35 times lower than its conventional counterpart. The weight of

the hybrid achromat will likewise be reduced since there is no negative element.

Additionally, the BK7 component of the hybrid contains about a third of the power

contained in the BK7 element of the conventional achromat, which will make the hybrid

lighter as well.

So far, all of the analysis involving spherical and coma has taken place at one

wavelength. As seen in Eq. (2.2.13), however, the power of a diffractive element has a

strong linear dependence on incident wavelength, or in other words,

02 ; (3.3.23)

where X is the incident wavelength, X0 is the design wavelength, and 00 is the design

focal length. Substituting the above expression, along with Eq. (3.3.20) and Eq. (3.3.19)

into

SI + SI2 = SI.

- +aB2 cT2+d]+2Y [B2 +4B2T2 +1][a +'"t1I+ bBW 1?+ - 3T2 ] Xy
41J (3.3.24)
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where SI,tot is the total spherical aberration in the achromat, allows us to find an

expression for the amount of spherochromatism present. Making the above substitutions,

the result is

SIACH

[a, ().)B2 + b, ())BIT, + c, (X)T2 +d,(k)] ) -

y, 
( ,P O

4 L-[a (X, )BI + b, (X°)BT + cl (X°)T 2 + d, ( 0)] X

03 B 2 4B + 3T22 + 1) V - X V2°

+ 2B 2T2  ,+ (3.3.25)

where 01 and 02 are the powers of the elements at the design wavelength. If XL=Xo,

Eq. (3.3.25) goes to zero, and the spherochromatism vanishes. The effect of

spherochromatism on the performance of the hybrid achromat designed above can be

seen in Fig. 3.3.4.

Trying to minimize the spherochromatism analytically quickly becomes a rather

formidable problem. Since adding defocus to a system can offset the effects of spherical

aberration, we are compelled to add some longitudinal chromatic aberration to offset the

affects of spherochromatism. Equation (3.3.25), however, is extremely complicated. The

coefficients al - dl are all functions of wavelength, and the bending parameters B1 and B2

are functions of 01 and 02. Minimizing spherochromatism is perhaps better accomplished

with the help of lens design software, just as designing real lenses from thin lens designs

are likewise accomplished with the help of a computer.
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Fig. 3.3.4 Affect of spherochromatism on the PSF and MTF of a hybrid achromat. Plots
of the PSF and MTF are shown for the F (0.4861ptm), C (0.6563g.m), and d (0.5876pm)
wavelengths. Since there is no spherical aberration at the d wavelength, the plots for that
wavelength coincide with the diffraction limit.
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3.4. Summary of chapter 3

Since third-order thin lens solutions are often used as starting points in lens design,

this chapter laid the foundation for the design of hybrid achromats. Section 3.2 showed

that third order aberrations reduce the PSF and MTF of an achromatic doublet. When the

two elements of a doublet are aligned correctly, the aberrations in one lens can be used to

minimize aberrations in the other. Fabrication errors, such as decenter and tilt., may arise

with systems having more than one lens element. If the elements are decentered or tilted

with respect to one another, the aberrations do not cancel. It was also found that decenter

and tilt will cause a shift in the image, and that this shift is proportional to the amount of

error. For these reasons, it is advantageous, if possible, to correct aberrations as closely

as possible to their origin.

In section 3.3, conventional and hybrid diffractive/refractive achromats were

designed. Using equations presented in chapter 2, a method was presented for designing

a cemented conventional achromat with minimal third order spherical aberration and

coma. A solution could not be found for zero spherical and coma, since there are more

constraints than degrees fo freedom, therefore a solution was chosen which yielded very

small amounts of each. The process was then applied to the design of a hybrid achromat.

The power required for achromatization by the diffractive surface was found to be quite

low. For this reason a fourth order phase term needed to be used to minimize spherical

aberration. With the addition of the fourth-order phase coefficient, there were enough

degrees of freedom to find a solution with exactly zero spherical and coma. Less power

in the BK7 element of the hybrid example resulted in lower surface curvatures as

compared with the conventional doublet. Lower surface curvatures will in turn lower the

weight of the lens. Finally the spherochromatism of the hybrid element was calculated

and was found to reduce both the PSF and MTF as expected.
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4. Optical data storage

4.1. Introduction

One application where a hybrid achromat may be particularly useful is in optical

data storage (ODS) systems. Optical data storage systems record information on an

optical disk by focusing light to a point, called the optical "stylus," and in some way

altering the recording medium. Access time includes various mechanical delays and is

defined as the time required to move the write/read head from one data location to

another.1 Making the head as small and light as possible decreases the access time.

Included in the head are an objective lens and mechanisms that refocus and move the lens

laterally to maintain a bright focus on the desired track.2 The lens is relatively light, but

its weight directly affects the size and weight of the refocusing mechanisms.

Additionally, these mechanisms create more heat the harder they have to work. The

objective lens, therefore, should be as small and light as possible.

The light source for ODS systems is a laser diode. As the ODS system switches

from read to write mode, output power increases to a level sufficient to leave a mark on

the recording medium. Corresponding to this increase in power, there is an increase in

temperature and a shift in wavelength of approximately 3-4nm. There are also smaller

shifts in wavelength due to mode hopping.3 These wavelength changes alter the effective

focal length of the objective lens, and occur much faster than the machine can refocus.

One solution is to achromatize the objective lens. Conventional refractive achromats can

be used, but as shown in Section 3.2, a hybrid achromat is much smaller and weighs

considerably less.

In this research, a hybrid achromat has been designed for use in an optical data

storage machine. Design constraints and performance goals are discussed in Section 4.2.

Design constraints include field of view, f/number, entrance pupil diameter, and working

distance. Performance goals are given in terms of a minimum polychromatic Strehl ratio

52



and a maximum achromatization limit. One quadratic and two sixteen-level diffractive

surfaces are considered. Fabrication errors are discussed in Section 4.3. Errors which

affect the Strehl ratio include element misalignment, thickness errors, and diffractive

surface zone radii error. Errors which affect diffraction efficiency include blaze height

and mask alignment errors.
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4.2. Hybrid objective design

4.2.1. Design goals

Typical ODS objective lens dimensions are shown in Fig. 4.2.1. The entrance pupil

radius is 4.3mm; the distance between the lens and the disk, or working distance, is

between 1-2mm; and the f/number is less than or equal to 1.0. Light is focused through a

1.2mm polycarbonate protective layer onto the recording surface.4 For mounting

tolerance, a 10 half field of view is included. Design goals include keeping the

polychromatic Strehl ratio at least 0.96 over the full field of view, and keeping the ratio of

focal length change to wavelength change less than or equal to 0.lgm/nm. The design

wavelength is 780±4nm.

10 HFOV
4.3mm diameter entrance pupil

hybrid diffractive/refractive acl

working distance, 1-2mm space

I--optical disk coating, 1.2mm thit

AF f/number = 1.0AF , 0.lm/nm

Polychromatic
Strehl ratio t 0.96

Fig. 4.2.1 Hybrid diffractive/refractive achromat used as an ODS objective. The
entrance pupil diameter, field of view, and disk layer thickness are design restrictions; the
working distance and f/number are variable; the Strehl ratio and achromatization ratio are
design goals.

Using the thin lens model described in Section 2.3, a starting point for the achromat
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was found. For fabrication reasons, the diffractive surface, and therefore the second

surface of the refractive element, was kept flat. Keeping this surface flat deviates from

the design process described in Section 3.3 because it removes two degrees of freedom.

If the design process is followed, however, the resulting shape is nearly convex-piano, the

nominal shape for a singlet with minimal third-order spherical and coma.5 Although the

hybrid achromat is not a singlet, nearly all of the power for the achromat is in the

refractive element, as seen in Eq. (3.3.22d). Restricting the diffractive element to a flat

surface does not introduce significant aberrations.

To achieve the desired performance, the first surface of the refractive element was

made aspheric, and higher order phase terms were included in the diffractive surface.

Monochromatic performance was optimized by minimizing the RMS spot size at 0', 0.7',

and 10 fields of view. Achromatization was achieved by tracing rays at the extremes of

the wavelength band, AX = 766-784nm, and then minimizing the difference between their

image plane location and that of the design wavelength, Xo = 780nm.

The resulting achromat is a convex-piano lens with an entrance pupil diameter of

4.3mm, a working distance of 1.92mm, and an f/number of 1.00. The polychromatic

Strehl ratio is greater than 0.97 over the full field, as shown in Fig. 4.2.2.. and the focal

length change per wavelength change is less than 0.023ptm/nm.
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Fig. 4.2.2. Polychromatic Strehl ratio vs field angle. The lens was designed with a half
field of 1 to account for errors introduced when mounting the lens into the ODS head.

The diffractive surface has the phase function shown in Fig. 4.2.3. The left axis is

marked off in units of 2xt phase cycles, so that the edge of a new zone is located wherever

the line moves through an integer on the left axis. From the plot, then, we see that there

are 53 zones in the diffractive element. As shown in Fig. 4.2.1, however, light entering

the lens bends inward, so that the zones at the edge of the diffractive lens are never used.

In fact, light will pass through only 20 zones. The width of the first and largest zone is

314.1tm, and the width of the smallest zone, near the edge of the element, is 18.6gm.

The width of the zone 20, the smallest used zone, is 32.41.m. The focal length of the

diffractive surface is 62.5mm and its f/number is 14.5.
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Fig. 4.2.3 Phase function for the diffractive element. The distances where the plot moves
through another phase cycle mark the radii of the zones.
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4.2.2. Fabrication

The refractive element will be injection molded, and the diffractive surface will then

be bonded onto, or etched into, the flat surface of the refractive element. Three different

methods will be used to fabricate one quadratic and two sixteen-step profiles.

The quadratic profile will be diamond turned into a layer of PMMA that has been

bonded onto the flat surface of the refractive lens, as shown in Fig. 4.2.4. The diffraction

efficiency of this lens is given by Eq. (2.2.16). With a quadratic blaze, and neglecting

errors, 100% of the incident light diffracts into the first order.

Refractive element 0 PMMA

Diamond dutting tool
0

li

0
0
0

material for the diffractive element will be PMMA, and bonded onto the refractive piece
prior to cutting.

Two sixteen-level elements will be fabricated. One multilevel diffractive surface

will be ion milled directly into the back surface of the refractive element, as in Fig. 4.2.5.
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Ion mill

Photoresist

Glass

Fig. 4.2.5. Ion milling a diffractive element into the flat surface of a refractive element.
A total of four etch cycles will be used to produce a sixteen-level diffractive element.

Another sixteen-level element will be etched into silicon. This surface will then be

used to produce a mold, which can in turn be used to replicate the diffractive surface onto

many refractive elements. This replication process is very similar to procedures that are

currently used to make aspheric coatings on spherical glass surfaces. 6- 11 After the flat

surface of the refractive element is coated with a material, such as UV-curing epoxy or a

plastic for example, the mold is pressed into this layer and the material is hardened. The

mold is then removed, leaving the desired diffractive surface. The process is shown in

Fig. 4.2.6.

Using Eq. (2.2.19), the maximum diffraction efficiency for a profile with p = 16,

(x = 1, and m = 1, is approximately 98.7%. The effects of fabrication errors is discussed

in the following section.

59



Etch

Photoresist

LJLJJ Epoxy P ---- - --- ----- -----

I Glass
Silicon

Metal

~ master

Fig. 4.2.6. Making a master for replication. The desired surface profile is first etched
into silicon, and this surface is used to produce a master out of metal. Using a material
such as epoxy, the master can then be used to replicate the diffractive surface onto many
refractive elements. For simplicity, only four-levels are shown.
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4.3. Fabrication tolerances

4.3.1. Image quality

It is important to consider how the achromat would perform with fabrication errors

such as element misalignment, thickness error, and zone radii shrinkage. These errors

will affect the achromats image quality, but not its diffraction efficiency. Element

misalignment includes decenter and tilt, discussed more generally in Section 3.2.2, and

shown in Fig. 4.3.1. The design should be able to work well out to ±10gim of decentering

and ±0.20 of tilt. The effects of these fabrication errors is shown in Figs. 4.3.2 and 4.3.3.

tilt S ±0. *

decenter S ±10pm

(a) (b)

Fig. 4.3.1. Decenter and tilt. The design should perform well with up to ±10gm decenter
and -0.20 tilt.
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00

0.99 On axis

~0.98 -.... ..........

Full field
'0.96 -.. - decentering in sagittal direction ......... ....................

... tangential direction

0.95- 1 ......................_.........................................................................

-10 -5 0 5 10
Decentering (pm)

Fig. 4.3.2. Polychromatic Strehi ratio vs decentering. On axis, the Strehi ratio stays
greater than 0.99 over the desired range. Even at full field, the Strehi ratio stays above
0.96.

1.00 ------- ................................

0.9 On axis

S 0.98 - - ------------- ----------

2 .9 ...--.. . .......................

Full field
0.96 -Tilt in sagittal direction

0.96 . ..... tangential direction ..... ....... .................

0.95-......................

-0.2 -0.1 0.0 0.1 0.2
Tilt on diffractive surface (deg)

Fig. 4.3.3. Polychromatic Strehi ratio vs tilt. Tilt of only ±+0.20 does not have much of an
effect on the Strehl ratio. On axis, the Strehl ratio is higher than 0.99, and at full field it
stays above 0.97.

In addition to decenter and tilt, there can also be an error in the thickness of either

the refractive or diffractive element, as in Fig. 4.3.4. This does not include error in the

thickness of the surface relief pattern itself, which affects only diffraction efficiency.,
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Thickness error in the refractive element or substrate will affect the Strehl ratio in a

manner shown in Fig. 4.3.5. Because the common surface is flat, the effect of thickness

error in each element is very similar. To maintain a Strehl ratio greater than 0.96, the

thickness errors cannot be greater than ±25pr.

erthicknes

Ieror

Fig. 4.3.4. Thickness error. Blaze height error affects the diffraction efficiency and
discussed in the next section.

1.00 . ............... . ... ........... .. ... ,, , ,,.- ... ............................. ........

S0.99 refractive element'-
..... substrate

0.98 ....... ...........

S0.97---. -- . m m.~~

E 0 .9 7 . .. .......... " ........... .... ......------------ .. ........... ...... ... •..... . . . . . ... ..... ....
. Full field .... .....

-~0.96 - refractive element ......
substrate

I I I I I
-20 -10 0 10 20

Thickness error (pm)

Fig. 4.3.5. Polychromatic Strehl ratio vs substrate or refractive element thickness error.
To maintain the desired Strehl ratio, the thickness error must be kept under 251.m.

Zone shrinkage or expansion, shown in Fig. 4.3.6, is another error that will degrade

the performance of the lens. If the diffractive surface is made from plastic or an epoxy,

for example, the radii of the zones will change as the surface shrinks and expands with
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temperature. In Section 2.2.1, we saw that changing the zone radii effectively changes

the focal length of the diffractive element. The ODS objective, however, utilizes higher

order phase coefficients, and changing the zone radii by even 1% will greatly degrade the

wavefront, and will have a detrimental effect, as seen in Fig. 4.3.7. To maintain a Strehl

ratio above 0.96, the zone shrinkage and expansion must be under +0.7%. Fortunately

the diffractive surface is bonded onto, or blazed into, a more stationary glass surface. If

the diffractive surface shrinks or expands, the most significant change will be in the

surface height.

zone radii

shrinkage/expansion

blaze height er

Fig. 4.3.6. Diffractive surface shrinkage and expansion. Both the zone radii and surface
height are affected. The effect of height error on diffraction efficiency is discussed in
Section 4.3.2.

A change in the focal length of the diffractive surface will also affect the

achromatization of the lens. A goal of the design was that the ratio of focal length change

to wavelength change should not exceed 0.1gm/nm. As seen in Fig. 4.3.8, expanding the

zones by as much as ±5% does not exceed the 0. Lrr/nm limit. Shrinking the zones

actually improves the achromatization, but at the cost of monochromatic performance.
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0.99 ....... ................ ............... ......

S0.96 il- -----

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Zone radii shrinkage (%)

Fig. 4.3.7. Polychromatic Strehl ratio vs zone radii shrinkage. To keep the Strehl ratio
higher than 0.96 at full field, shrinkage should be kept under ±0.7%.

0.0 .................. ... .......... ....... .... . ......... ..............

A.,Aat X 776nir
C 0 .00 - .. . . . .................. . ...................................

- 0-.05 -... .. ........ . ....... ...... .. .............. ..... ........... o... . ......... ....... .....
AF at X 784nm

-0 .1 0 -. ................ ............................... .................................................................................................................

-4 -2 0 2 4
Zone radii shrinkage (%)

Fig. 4.3.8. Focal length per wavelength change vs zone radii shrinkage. Even if the
shrinkage is greater than ±5%, the lens is achromatized within the 0.l.tm/nm limit.

In the discussion above, all of the errors were treated individually. Actually, of

course, there will be a combination of errors. Fig. 4.3.9 provides predicted polychromatic
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Strehl ratios for the four cases listed in Table 4.3.1. Since zone shrinkage is likely to be

extremely low, values are included assuming no change in zone radii.

Field of view

0.99 --

.2 0.7
0.98

c 0.97 -
._

E 0.96
0

_> 0.95 -
0.

0.94

0.93 .

A B C D

Fig. 4.3.9. Polychromatic Strehl ratios for the four cases listed in Table 4.3.1.

Columns Decenter (jim) Tilt (deg) Thickness (.m) Zone radii (%)

(sagittal) (sagittal)

A 5 0.1 12.5 0.35

B 10 0.2 25 0.7

C 5 0.1 12.5 0

D 10 0.2 25 0

Table 4.3.1. Four different combinations of fabrication errors.
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As seen in Fig. 4.3.9, assuming zone radii changes are negligible, the Strehl ratio

dips below 0.96 only in the worst case scenario. If the field angle tolerance can be kept

under 1' half field of view, however, acceptable performance can be expected.

4.3.2. Diffraction efficiency

Errors such as blaze height and mask alignment affect the shape of the surface

blaze, hence they do not introduce aberrations to the lens, rather, they lower the

diffraction efficiency. Farn and Goodman, 12 and Cox, et. al.13, 14, 15 investigated the

effects of etch depth error on the image quality and diffraction efficiency of two-level

diffractive lenses, and the effects of mask misalignment error on four-level diffractive

lenses. Cox, et. al. found that within the capabilities of current technology, neither of

these fabrication errors had a significant impact on image quality, and only mask

alignment error would significantly reduce the diffraction efficiency. Nevertheless, it is

still useful to investigate the causes and effects of depth error as well as mask alignment

error.

In Section 4.3.1, for example, material shrinkage and expansion were presented as

reasons for changes in zone radii. Because the diffractive element is bonded onto a glass

surface, however, if the material shrinks or expands, almost all of the change will be in

the thickness of the surface, introducing a depth error. Diffraction efficiency as a

function of order number and surface blaze height can be found with the help of

Eq. (2.2.3), which expresses the phase introduced by a diffractive lens as

9(r) 2 (3~)[n. () - ]d (r), (4.3.1)

where ns is the refractive index of the substrate material and d(r) is the height of the blaze
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at the radius r. If Xo is the design wavelength, and do(r) is the design thickness, then the

desired phase modulation is

oo(r) =X [n.(k,) - 1]do(r). (4.3.2)

Combining Eqs. (4.3.1) and (4.3.2) yields

cp(r) = (p(r) (4.3.3)

where
X.0 [n,(X,)-l] d(r)

Cc X [n.( 0)- 1] do(r) (4.3.4)

Setting d = do results in the definition for a given by Eq. (2.2.6). If we assume that

X = X, then alpha is given by

a = d(r) (4.3.5)
do(r)"

Substituting this into Eq. (2.2.16) gives us the following expression for a quadratic blaze:

rl(d,m) = sinc2( d -i m). (4.3.6)do

For a multi-level diffractive lens, using Eq. (2.2.18), the equivalent relationship is

sin'( tm - sin [t(d m )]

'T(d,p,m)= P ) L 'do (4.3.7)

(6tM)2 2 ]
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where p is the number of levels. Equations (4.3.6) and (4.3.7), with p = 16, are shown in

Fig. 4.3.10.

0.6 - ...- ..... . .... ...... -. . - -------...- . ..... ...

M 0.6 . (quadratic)

$a0.4- M r (16 level)0.4- ....... .
Unwanted orders,

0 .20 - " .............................
..... .-.---- -- -- -- m = 2 (quadratic) .....

-m =0 (quadratic)

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
Blaze height thickness error (pim)

Fig. 4.3.10. Diffraction efficiency vs blaze height thickness error. The design order is
the first order. Other orders, when d*do, give rise to background light.

Unfortunately, most fabrication errors are extremely difficult to model. For

example, a sixteen-level diffractive lens requires four mask and etch steps, and each

etching will generate a different error. Each step will therefore have it's own ak as given

by Eq. (4.3.5). The phase of a p level diffractive lens, given by Eq. (2.2.17), will then

take the form,

(p(r) = 2cakt (p + k), (4.3.8)
p

where czk is no longer a constant. If do is the maximum thickness, then the design height

of the kth level is given by dok = do-(k/p)do and the actual height is given by dk = dok-Ak,

where Ak is the step error. Substituting these heights into Eq. (4.3.5) and simplifying, we

find that ock is given by
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pAk (4.3.9)
d0(p -k)

Assuming the profile is made with 2n steps, which is most often the case, it's easy

to quickly calculate Ak as a function of etch error, 8n, with the help of a "binary code."

The procedure is shown in Fig. 4.3.11.

51 1 5 1 8n =The error in the nth etch

A6-> 0 1 1 0 A6 = 62 + 53

6 writen in binary

A13-> 1 1 0 1 A13 = 81 + 82 + 84

13 writen in binary

Fig. 4.3.11. "Binary code" used to quickly calculate Ak. In this example, four masks for a
sixteen-level diffractive lens is assumed.

The example above is for a four mask, or sixteen-level diffractive lens. Each of the

etches will have it's own etch error, 8n. Each step error, Ak, will be some combination of

8 n. To find the correct combination, the etch errors are pictorially placed next to each

other, as in Fig. 4.3.11. The value of A6 , for example, is found by writing "6" in binary,

0110, with one digit under each etch error. The etch errors above the l's, 82 and 83, will

sum to A6 . This method provides a quick way of calculating Ak, and ak, which is

especially useful in computer programs.

Now that cxk is defined, the procedure given in Chapter 2 is used with Eq. (4.3.8), to

find the following expression for the diffraction efficiency,
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2

T r1,m) = s ( i27r L kkn] (4.3.10)
'q~~m = -- j  eXpL-r-oat+ k ) ,m

where, as before, m is the order number and p is the number of steps.

Expanding Eq. (4.3.10) with two levels is simple, with four levels is tedious, and

with eight or more levels is likely to produce mistakes. To calculate diffraction

efficiency for a sixteen-level lens, a program was written which calculated ak, performed

the summation, and multiplied by the complex-conjugate. The results for various

combinations of etch errors are shown in Table 4.3.2.

case 81 82 83 84 11

1 0 0 0 0.08881 0.950

2 0 0 0.177625 0.08881 0.811

3 0 0 0 0.07 0.964

4 0 0 0.07 0 0.964

5 0 -0.07 0 0 0.964

6 -0.07 0 0 0 0.964

7 0 0 0.07 -0.07 0.941

8 0.07 -0.07 0 0 0.941

9 -0.1 0.1 -0.1 0.1 0.811

10 0.1 0.1 0.1 -0.1 0.811

11 0.1 -0.09 -0.21 0.001 0.722

12 -0.001 0.21 0.1 -0.09 0.722

Table 4.3.2 Diffraction efficiencies for various etch depth errors.
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The maximum height of the profile used in Table 4.3.2 is 1.421 Am, which the

design height of the profile to be made of epoxy. Cases 1 and 2 are provided to check the

calculations. Case 1 shows that if the fourth etch step is off by a complete step height,

essentially making the sixteen-level lens an eight-level lens, then the diffraction

efficiency is that of an eight-level lens. Case 2 is similar, but now the third etch step is

off by two step heights, resulting in the diffraction efficiency of a four-level lens. Cases

3-6 show that the origin and sign of the error are irrelevant. This is also seen in cases

7 and 8, and cases 9 and 10, where different combinations of equal errors result in the

same efficiencies. Finally, 11 and 12 show that even different combinations of unequal

errors of changing sign result in the same diffraction efficiency. Evidently only the

magnitude and number of errors is relevant. Typically etch errors of less than or equal to

0.7pm are possible.

Cox, et.al. 13. 14, 15 calculated the effects of misalignment on the diffraction

efficiency, the results of which are shown in Fig. 4.3.12. They then verified these results

by fabricating and testing several four-level diffractive lenses.

1.0

0.9

9 0 .8 ... ............... 0 .0ZE 0.8 0-.10--

=0.6

02

0.5

0.4

0.31
80 70 60 50 40 30 20 10 0

Zone spacing (gm)

Fig. 4.3.12. The effects of misalignment by an amount 8 on the diffraction efficiency of
four-level f/10 diffractive lenses.
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Alignment accuracy of less than 0.1gm is possible, but again, the results in

Fig. 4.3.12 are for a four-level surface. A sixteen-level surface is much more complicated

because each mask will contribute its own alignment error. Furthermore, with alignment

errors, the lens is no longer circularly symmetric.

Exactly how non-unity diffraction efficiency will affect ODS systems is not yet

known. It may be helpful, however, to examine the integrated efficiency, discussed in

Section 2.2.2. Equation (2.2.25) shows that the integrated efficiency acts as a scaling

factor for the MTF. Since the MTF and PSF of an optical system are Fourier transform

pairs, the integrated efficiency also scales the PSF. However, unlike aberrations, which

reduce the peak value of the PSF and increase the energy in the side lobes, energy lost

from the peak value of the PSF due to non-unity diffraction efficiency is spread more or

less uniformly across the image plane.

For the sixteen-level ODS lens discussed in Section 4.2, for example, the peak

diffraction efficiency, assuming no fabrication errors, is 98.7%. Since the f/number of

the diffractive lens is 14.5, scalar diffraction theory is assumed to be valid and the

efficiency is constant across the surface of the element. Assuming monochromatic light

and no fabrication errors, the integrated efficiency is then equal to the scalar diffraction

efficiency, or 98.7%. 1.3% of the light in the PSF of the achromat, therefore, will be

spread across an area at least 4mm in diameter. Since the achromat works at f/1.0 with

X0 = 0.780gm, the optical stylus, or the light contained within the first zero of the Airy

disk, has a diameter of 0.001903mm. The undiffracted light is therefore spread over an

area many orders of magnitude larger than the optical stylus, and will most likely be

negligible.

The reason the background is so diffuse is that with a sixteen-level diffractive lens,

where the design order is m = 1, we see from Eq. (2.2.19) that the closest non-zero orders

are m =-15, and m = 17, which illuminate an extremely large area. Even with
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polychromatic light and fabrication errors, where light propagates into the m' 0 and

m =2 orders, background light illuminates an area 0.2mm in diameter, which is still

orders of magnitude larger than the optical stylus. Whether this undiffracted light will

have a significant impact an ODS system has yet to be determined.
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4.4 Summary of chapter 4

In this chapter, we discussed one application of diffractive lenses, to achromatize an

optical data storage objective. Section 4.2 outlined the design constraints and

performance goals, and then presented the final result. A hybrid diffractive/refractive

achromat was designed with a 4.3mm entrance pupil diameter, 1 half field of view,

1.9mm working distance, and an f/number of 1.00. The polychromatic Strehl ratio was

shown to be greater than 0.97 over the full field, and the focal length change per

wavelength change was shown to be less than 0.03gm/nm. The convex-plano refractive

element is to be injection molded and made of glass. Three diffractive surfaces, one

quadratic and two with sixteen-level profiles, will be fabricated.

Section 4.3 described how the lens would perform with certain fabrication errors.

First errors that affected image quality were discussed. The lens performed acceptably

with ±10gtm decentering, 0.20 tilt, 25gtm of thickness error, and 0.7% zone radii change,

all of which are within capabilities of current technology. The combination of each of the

errors at their maximum, an unlikely situation, degraded the Strehl ratio enough to dip

beneath 0.96 at full field. Zone radii shrinkage or expansion, which affects the focal

length of the diffractive surface, was also shown to have a negligible impact on

achromatization. Errors which affected diffraction efficiency were then discussed. It was

found that with etch depth errors, only the magnitude and number of errors is significant.

Since it is not yet known how unwanted orders will affect the performance of ODS

systems, it is difficult to specify a minimum required diffraction efficiency. Within the

capabilities of current technology, etch depth errors can be kept negligibly small, but

mask misalignment may be a problem.
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5. Conclusion

The purpose of this thesis was to address the use of a hybrid diffractive/refractive achromat

in optical data storage. Chapter 2 presented the tools needed to design an achromat with a

diffractive element. Section 2.2 addressed rotationally symmetric diffractive lenses and included

a discussion on diffraction efficiency, an additional concern that is not an issue with conventional

refractive systems. When designing systems with diffractive elements, it may be advantageous

to model the diffractive surface as a thin lens with an extremely high refractive index.

Section 2.3 reviewed the thin lens, and showed how the aberrations of a diffractive surface can

be considered a special case of the thin lens aberrations.

Chapter 3 was concerned with the design of achromatic doublets. The traditional method

of designing a conventional refractive achromatic was first presented, then, using the thin lens

model described in Chapter 2, a hybrid achromat was designed. The large negative dispersion of

a diffractive lens, allowed the hybrid achromat to be formed of two positive elements. The

refractive element of the hybrid was found to have lower surface curvatures than refractive

elements in conventional doublets, resulting in much smaller and lighter achromats.

The application of hybrid achromats to optical data storage was presented in Chapter 4. A

hybrid achromat is desirable because of its small size and light weight. It was seen that the

hybrid achromat exceeded the design goals, and toleranced well with fabrication errors.

Fabrication inaccuracies which decreased the diffraction efficiency were also investigated. One

will be quadratic and two sixteen-level profiles are being investigated for the diffractive surface.

Unfortunately, it is not yet known how the non-unity diffraction efficiency of the multi-level

profiles will affect the performance of an optical data storage machine. The undiffracted light

total a few percent at most and is extremely out of focus. While this background light shouldn't

present a problem, a definite answer may not be known until the system is tested.
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